Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Neuroscience ; 547: 98-107, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657727

RESUMEN

OBJECTIVE: Postoperative pain remains one of the most common complaints after surgery, and appropriate treatments are limited. METHODS: We therefore investigated the effect of the anti-nociceptive properties of magnesium sulfate (MgSO4), an N-methyl-D-aspartate (NMDA) receptor antagonist, on incision-induced postoperative pain and peripheral and central nervous system inflammation. RESULTS: We found that local MgSO4 administration dose-dependently increases paw withdrawal latency, indicating reduced peripheral postoperative pain. Furthermore, MgSO4 inhibited the expression of interleukin-1ß (IL-1ß) and inducible nitric oxide synthase (iNOS) and phosphorylation of the NMDA receptor NR1 subunit in injured paw tissue and significantly attenuated microglial and astrocytic activation in the ipsilateral lumbar spinal cord dorsal horn. CONCLUSION: Locally administered MgSO4 has potential for development as an adjunctive therapy for preventing central nociceptive sensitization.

2.
Reprod Sci ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689081

RESUMEN

Cuproptosis is a recently discovered mode of cell death that has garnered attention due to its association with various diseases. However, the intricate genetic relationship between cuproptosis and ovarian aging has remained largely unexplored. This study aimed to bridge this knowledge gap by leveraging data sets related to ovarian aging and cuproptosis. Through comprehensive bioinformatics analyses, facilitated by R software, we uncovered FDX1 as a potential cuproptosis-related gene with relevance to ovarian aging. To gain insights into FDX1's role, we conducted spatial transcriptome analyses in the ovaries of both young and aged female mice. These experiments revealed a significant reduction in FDX1 expression in the aging group compared to the young group. To substantiate these findings at the genetic level, we turned to clinical infertility biopsies. Impressively, we observed consistent results in biopsies from elderly infertile patients, reinforcing the link between FDX1 and ovarian aging. Moreover, we delved into the pharmacogenomics of ovarian cell lines and discovered that FDX1 expression levels were intricately associated with heightened sensitivity to specific small molecule drugs. This observation suggests that modulating FDX1 could potentially be a strategy to influence drug responses in ovarian-related therapies. In sum, this study marks a pioneering effort in identifying FDX1 as a cuproptosis-related gene implicated in ovarian aging. These findings hold substantial promise, not only in shedding light on the underlying mechanisms of ovarian aging but also in positioning FDX1 as a potential diagnostic biomarker and therapeutic target. With further research, FDX1 could play a pivotal role in advancing precision medicine and therapies for ovarian-related conditions.

3.
Free Radic Biol Med ; 220: 28-42, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679300

RESUMEN

Cancer of the head and neck encompasses a wide range of cancers, including oral and oropharyngeal cancers. Oral cancer is often diagnosed at advanced stages and has a dismal prognosis. Piscidin-1, a marine antimicrobial peptide (AMP) containing approximately 22 amino acids, also exhibits significant anticancer properties. We investigated the possible anti-oral cancer effects of piscidin-1 and clarified the mechanisms underlying these effects. We treated the oral squamous cell carcinoma cell lines OC2 and SCC4 with piscidin-1. Cell viability and the expression of different hallmark apoptotic molecules, including reactive oxygen species (ROS), were tested using the appropriate MTT assay, flow cytometry and western blotting assays, and human umbilical vein endothelial cell (HUVEC) wound healing, migration, and tube formation (angiogenesis) assays. Piscidin-1 increases cleaved caspase 3 levels to induce apoptosis. Piscidin-1 also increases ROS levels and intensifies oxidative stress in the endoplasmic reticulum and mitochondria, causing mitochondrial dysfunction. Additionally, it decreases the oxygen consumption rates and activity of mitochondrial complexes I-V. As expected, the antioxidants MitoTEMPOL and N-acetylcysteine reduce piscidin-1-induced ROS generation and intracellular calcium accumulation. Piscidin-1 also inhibits matrix metalloproteinase (MMP)-2/-9 expression in HUVECs, affecting migration and tube formation angiogenesis. We demonstrated that piscidin-1 can promote apoptosis via both intrinsic and extrinsic apoptotic pathways and findings indicate that piscidin-1 has anti-proliferative and anti-angiogenic properties in oral cancer treatment. Our study on piscidin-1 thus provides a basis for future translational anti-oral cancer drug research and a new theoretical approach for anti-oral cancer clinical research.

4.
Diagnostics (Basel) ; 14(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38472972

RESUMEN

The challenges of respiratory infections persist as a global health crisis, placing substantial stress on healthcare infrastructures and necessitating ongoing investigation into efficacious treatment modalities. The persistent challenge of respiratory infections, including COVID-19, underscores the critical need for enhanced diagnostic methodologies to support early treatment interventions. This study introduces an innovative two-stage data analytics framework that leverages deep learning algorithms through a strategic combinatorial fusion technique, aimed at refining the accuracy of early-stage diagnosis of such infections. Utilizing a comprehensive dataset compiled from publicly available lung X-ray images, the research employs advanced pre-trained deep learning models to navigate the complexities of disease classification, addressing inherent data imbalances through methodical validation processes. The core contribution of this work lies in its novel application of combinatorial fusion, integrating select models to significantly elevate diagnostic precision. This approach not only showcases the adaptability and strength of deep learning in navigating the intricacies of medical imaging but also marks a significant step forward in the utilization of artificial intelligence to improve outcomes in healthcare diagnostics. The study's findings illuminate the path toward leveraging technological advancements in enhancing diagnostic accuracies, ultimately contributing to the timely and effective treatment of respiratory diseases.

5.
Biomed Pharmacother ; 172: 116279, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368838

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin condition primarily driven by T helper 2 (Th2) cytokines, resulting in skin barrier defects, angiogenesis, and inflammatory responses. The marine natural product excavatolide B (EXCB), isolated from the Formosan Gorgonian coral Briareum stechei, exhibits anti-inflammatory and analgesic properties. To enhance solubility, EXCB is chemically modified into the derivatives EXCB-61 salt and EXCB-79. The study aims to investigate the therapeutic effects of these compounds on dinitrochlorbenzene (DNCB)-induced skin damage and to elucidate the underlying anti-inflammatory and anti-angiogenesis mechanism. In vitro, using lipopolysaccharide (LPS)-induced RAW 264.7 cells, all compounds at 10 µM significantly inhibited expression of inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2), vascular endothelial growth factor (VEGF), and cytokines (interleukin (IL)-1ß, IL-6, and IL-17A). In vivo, topical application of these compounds on DNCB-induced AD mice alleviated skin symptoms, reduced serum levels of IgE, IL-4, IL-13, IL-17, and interferon-γ, and moderated histological phenomena such as hyperplasia, inflammatory cell infiltration, and angiogenesis. The three compounds restored the expression of skin barrier-related proteins (loricrin, filaggrin, and claudin-1) and reduced the expression of angiogenesis-related proteins (VEGF and platelet endothelial cell adhesion molecule-CD31) in the tissues. This is the first study to indicate that EXCB, EXCB-61 salt, and EXCB-79 can treat AD disease by reducing inflammation and angiogenesis. Hence, they may be considered potential candidates for the development of new drugs for AD.


Asunto(s)
Dermatitis Atópica , Diterpenos , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Inhibidores de la Angiogénesis , Factor A de Crecimiento Endotelial Vascular , Dinitroclorobenceno , Citocinas , Proteínas Angiogénicas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
6.
Environ Toxicol ; 39(6): 3292-3303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415901

RESUMEN

The high mortality rate of glioblastoma multiforme (GBM), a lethal primary brain tumor, is attributable to postsurgical recurrence. STAT3, an oncogenic protein, is a signal transducer and transcription activator encourages cancer cell migration and proliferation, which results in resistance to therapy. STAT3 inhibition reduces cancer metastasis and improves patient prognosis. Bt354, a small molecule STAT inhibitor, exhibits significant cytotoxic and anti-proliferative activities against certain cancer types. Here, we demonstrated that exposure of GBM cells (U87 MG) to Bt354 had a significant, concentration-dependent growth suppression. Bt354 also induced apoptosis and downregulated the expression of the epithelial-mesenchymal transition genes. Therefore, this study suggests the potential of Bt354 for treating GBM owing to its ability to induce cytotoxicity.


Asunto(s)
Antineoplásicos , Apoptosis , Glioblastoma , Factor de Transcripción STAT3 , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral , Fosforilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología
7.
Mol Pharmacol ; 105(4): 286-300, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38278554

RESUMEN

Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-ß signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-ß receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-ß pathway. PG blocked TGF-ß signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-ß receptors in the cytoplasm by impeding the recycling of type II TGF-ß receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-ß-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-ß pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-ß signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-ß strategies.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Prodigiosina/farmacología , Prodigiosina/metabolismo , Polímeros/metabolismo , Pirroles , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Fosforilación , Células Epiteliales/metabolismo , Factor de Crecimiento Transformador beta1 , Proteína Smad2/metabolismo
8.
Int J Biol Sci ; 20(1): 218-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164173

RESUMEN

Copper (Cu) plays a crucial and diverse function in biological systems, acting as a cofactor at numerous sites of enzymatic activity and participating in various physiological processes, including oxidative stress regulation, lipid metabolism, and energy metabolism. Similar to other micronutrients, the body regulates Cu levels to ensure homeostasis; any disruption in Cu homeostasis may result in various illnesses. Cuproptosis causes proteotoxic stress and ultimately results in cell death by the binding of Cu ions to lipid-acylated proteins during the tricarboxylic acid cycle of mitochondrial respiration. Cu is not only involved in regulatory cell death (RCD), but also in exogenous factors that induce cellular responses and toxic outcomes. Cu imbalances also affect the transmission of several RCD messages. Therefore, this article presents a thorough examination of the mechanisms involved in Cu-induced RCD as well as the role of Cu complexes in its pathophysiology.


Asunto(s)
Muerte Celular Regulada , Humanos , Muerte Celular , Comunicación , Cobre/toxicidad , Metabolismo Energético , Apoptosis
9.
Curr Drug Deliv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38204256

RESUMEN

BACKGROUND: Gefitinib (GFN) is an Epithelial Growth Factor Receptor (EGFR) inhibitor, and Food and Drug Administration (FDA) has approved medication to treat lung cancer. However, this investigation aimed to produce and characterize Gefitinib (GFN)-loaded chitosan and soy lecithin nanoparticles (NPs) modified with D-α-tocopheryl polyethylene glycol 1000 succinate mono ester (TPGS) and assess their therapeutic potential against HepG2 liver cell lines. METHODS: Chitosan, a cationic polymer with biocompatible and biodegradable properties, was combined with soy lecithin to develop the NPs loaded with GFN using a self-organizing ionic interaction methodology. RESULTS: The entrapment efficiency and drug loading were found to be 59.04±4.63 to 87.37±3.82% and 33.46±3.76 to 49.50±4.35%, respectively, and results indicated the encapsulation of GEN in NPs. The pH of the formulations was observed between 4.48-4.62. Additionally, all the prepared NPs showed the size and PDI range of 89.2±15.9 nm to 799.2±35.8 nm and 0.179±0.065 to 0.455±0.097, respectively. The FTIR bands in optimized formulation (GFN-NP1) indicated that the drug might be contained within the NP's core. The SEM photograph revealed the spherical shape of NPs. The kinetic release model demonstrated the combination of diffusion and erosion mechanisms. The IC50 value of GFN and GFN-NP1 formulation against the HepG2 cell lines were determined and found to be 63.22±3.36 µg/ml and 45.80±2.53 µg/ml, respectively. DAPI and PI staining agents were used to detect nuclear morphology. CONCLUSION: It was observed that the optimized GFN-NP1 formulation successfully internalized and inhibited the growth of HepG2 cells. Hence, it can be concluded that the prepared NPs can be a new therapeutic option for treating liver cancer.

10.
J Pers Med ; 14(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38248779

RESUMEN

Secreted phosphoprotein 1 (SPP1), also known as osteopontin (OPN), is located on chromosome 4q22.1. This multifunctional secreted acidic glycoprotein is expressed intracellularly and extracellularly in various tissues, where it interacts with regulatory proteins and pro-inflammatory immune chemokines, contributing to the pathogenesis of multiple diseases. Nevertheless, the intricate genetic connections between SPP1 and ovarian aging remain largely unexplored. This study aims to bridge this knowledge gap by delving into ovarian aging and its associations with SPP1 using multi-omics data analysis. Our findings indicate that SPP1 is a potential gene related to ovarian aging. To comprehend the role of SPP1, we conducted spatial transcriptomic analyses on young and aged female mouse ovaries, revealing a significant decline in SPP1 expression in the aging group compared to the young group. Similarly, a significantly low level of SPP1 was found in the 73-year-old sample. Additionally, in-depth single-cell RNA-sequencing analysis identified associations between SPP1 and ITGAV, ITGB1, CD44, MMP3, and FN1. Notably, co-expression analysis highlighted a strong correlation between SPP1 and ITGB1. In summary, this study pioneers the identification of SPP1 as a gene implicated in ovarian aging. Further research into the role of SPP1 has the potential to advance precision medicine and improve treatment strategies for ovarian aging-related conditions.

11.
J Cell Physiol ; 238(10): 2316-2334, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37724600

RESUMEN

Vibrio vulnificus, a gram-negative bacterium, causes serious wound infections and septicemia. Once it develops into early phase sepsis, hyperinflammatory immune responses result in poor prognosis in patients. The present study aimed to examine the possible underlying pathogenic mechanism and explore potential agents that could protect against V. vulnificus cytotoxicity. Here, we report that infection of mouse macrophages with V. vulnificus triggers antiphagocytic effects and pyroptotic inflammation via ATP-mediated purinergic P2X7 receptor (P2X7R) signaling. V. vulnificus promoted P2X7-dependent nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 translocation, modulating the expression of the inflammasome sensor NLR family pyrin domain containing 3 (NLRP3), adaptor apoptosis-associated speck-like protein containing a card (ASC), and pyroptotic protein gasdermin D (GSDMD) in mouse macrophages. V. vulnificus induced the NLRP3/caspase-1 inflammasome signaling complex expression that drives GSDMD transmembrane pore formation and secretion of interleukin (IL)-1ß, IL-18, and macrophage inflammatory protein-2 (MIP-2). This effect was blocked by P2X7R antagonists, indicating that the P2X7R mediates GSDMD-related pyroptotic inflammation in macrophages through the NF-κB/NLRP3/caspase-1 signaling pathway. Furthermore, blockade of P2X7R reduced V. vulnificus-colony-forming units in the spleen, immune cell infiltration into the skin and lung tissues, and serum concentrations of IL-1ß, IL-18, and MIP-2 in mice. These results indicate that P2X7R plays a vital role in mediating phagocytosis by macrophages and pyroptotic inflammation during V. vulnificus infection and provides new opportunities for therapeutic intervention in bacterial infections.

12.
Nutrients ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630779

RESUMEN

This study investigated whether oral supplementation with protease-soluble chicken type II collagen (PSCC-II) mitigates the progression of anterior cruciate ligament transection (ACLT)-induced osteoarthritis (OA) in rats. Eight-week-old male Wistar rats were randomly assigned to the following groups: control, sham, ACLT, group A (ACLT + pepsin-soluble collagen type II collagen (C-II) with type I collagen), group B (ACLT + Amano M-soluble C-II with type I collagen), group C (ACLT + high-dose Amano M-soluble C-II with type I collagen), and group D (ACLT + unproteolyzed C-II). Various methods were employed to analyze the knee joint: nociceptive tests, microcomputed tomography, histopathology, and immunohistochemistry. Rats treated with any form of C-II had significant reductions in pain sensitivity and cartilage degradation. Groups that received PSCC-II treatment effectively mitigated the ACLT-induced effects of OA concerning cancellous bone volume, trabecular number, and trabecular separation compared with the ACLT alone group. Furthermore, PSCC-II and unproteolyzed C-II suppressed ACLT-induced effects, such as the downregulation of C-II and upregulation of matrix metalloproteinase-13, tumor necrosis factor-α, and interleukin-1ß. These results indicate that PSCC-II treatment retains the protective effects of traditional undenatured C-II and provide superior benefits for OA management. These benefits encompass pain relief, anti-inflammatory effects, and the protection of cartilage and cancellous bone.


Asunto(s)
Osteoartritis , Péptido Hidrolasas , Masculino , Ratas , Animales , Colágeno Tipo II , Pollos , Ligamento Cruzado Anterior/cirugía , Colágeno Tipo I , Microtomografía por Rayos X , Ratas Wistar , Endopeptidasas , Administración Oral , Osteoartritis/tratamiento farmacológico , Umbral del Dolor
13.
Reprod Sci ; 30(12): 3529-3536, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37500975

RESUMEN

Ferroptosis, a recently discovered form of cell death, has been implicated in various diseases. However, the genetic relationship between ferroptosis and ovarian aging has not been thoroughly investigated through informatics analysis. In this study, we conducted bioinformatics analysis using ovarian aging and ferroptosis datasets to identify potential ferroptosis-related genes using R software. The expression levels of these genes at different ages were analyzed using the GTEx public database. To validate these findings at the genetic level, we performed clinical infertility biopsies. Bioinformatics analysis of a mouse ovary dataset revealed significantly higher expression of Tfrc, Ncoa4, and Slc3a2 in the aging group compared to the young group, while Gpx4 showed the opposite pattern. Consistent results were observed in biopsies from clinically aged infertile patients. This study is the first to identify a ferroptosis-related gene associated with ovarian aging, highlighting its potential as a diagnostic biomarker.


Asunto(s)
Ferroptosis , Infertilidad , Animales , Ratones , Femenino , Humanos , Anciano , Relevancia Clínica , Ferroptosis/genética , Ovario , Envejecimiento/genética , Biopsia
14.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37513828

RESUMEN

Through our ongoing research on investigating new anti-inflammatory terpenoids derived from soft corals, seven capnellenes sourced from Capnella imbricata were discovered. Among these, three were previously unknown compounds named Δ9(12)-capnellene-6α,8ß-diol (1), Δ9(12)-capnellene-6α,8ß,10α-triol (2), and Δ9(12)-capnellene-2ß,8ß,10α-triol (3). The structures of all compounds were determined by spectroscopic analysis (IR, MS, 1D-, and 2D-NMR) and a comparison with the existing literature data. The compounds 1 and 2 were found to be the first-ever identified 6-hydroxy capnellenes. In the inflammation inhibitory assessments, compounds 1-7 were tested for their in vitro activities against inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in LPS-induced RAW264.7 cells. Capnellenes 2 and 5 demonstrated significant reductions in iNOS levels (27.73% and 47.61%) at a concentration of 10 µM. Additionally, capnellenes 1, 5, and 7 (at 10 µM) exhibited statistically significant inhibitions (ranging from 7.64% to 12.57%) against COX-2 protein expressions. Our findings indicated that the oxygen-bearing functionalities at C-8 and C-10 play critical roles in inhibiting iNOS protein induction, which can promote inflammation in LPS-induced RAW264.7 cells. Furthermore, a principal component analysis tool, the chemical global positioning system for natural products (ChemGPS-NP), was applied to confirm these capnellane-based sesquiterpenes as promising candidates for future anti-inflammatory agents targeting iNOS-related targets.

15.
Antioxidants (Basel) ; 12(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37507960

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone tumor that produces immature osteoid. Metastatic OS has a poor prognosis with a death rate of >70%. Manoalide is a natural sesterterpenoid isolated from marine sponges. It is a phospholipase A2 inhibitor with anti-inflammatory, analgesic, and anti-cancer properties. This study aimed to investigate the mechanism and effect of manoalide on OS cells. Our experiments showed that manoalide induced cytotoxicity in 143B and MG63 cells (human osteosarcoma). Treatment with manoalide at concentrations of 10, 20, and 40 µM for 24 and 48 h reduced MG63 cell viability to 45.13-4.40% (p < 0.01). Meanwhile, manoalide caused reactive oxygen species (ROS) overproduction and disrupted antioxidant proteins, activating the apoptotic proteins caspase-9/-3 and PARP (Poly (ADP-ribose) polymerase). Excessive levels of ROS in the mitochondria affected oxidative phosphorylation, ATP generation, and membrane potential (ΔΨm). Additionally, manoalide down-regulated mitochondrial fusion protein and up-regulated mitochondrial fission protein, resulting in mitochondrial fragmentation and impaired function. On the contrary, a pre-treatment with n-acetyl-l-cysteine ameliorated manoalide-induced apoptosis, ROS, and antioxidant proteins in OS cells. Overall, our findings show that manoalide induces oxidative stress, mitochondrial dysfunction, and apoptosis, causing the cell death of OS cells, showing potential as an innovative alternative treatment in human OS.

16.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445948

RESUMEN

Osteoarthritis (OA) is the most common form of arthritis and joint disorder worldwide. Metabolic reprogramming of osteoarthritic chondrocytes from oxidative phosphorylation to glycolysis results in the accumulation of lactate from glycolytic metabolite pyruvate by lactate dehydrogenase A (LDHA), leading to cartilage degeneration. In the present study, we investigated the protective effects of the intra-articular administration of oxamate (LDHA inhibitor) against OA development and glycolysis-related protein expression in experimental OA rats. The animals were randomly allocated into four groups: Sham, anterior cruciate ligament transection (ACLT), ACLT + oxamate (0.25 and 2.5 mg/kg). Oxamate-treated groups received an intra-articular injection of oxamate once a week for 5 weeks. Intra-articular oxamate significantly reduced the weight-bearing defects and knee width in ACLT rats. Histopathological analyses showed that oxamate caused significantly less cartilage degeneration in the ACLT rats. Oxamate exerts hypertrophic effects in articular cartilage chondrocytes by inhibiting glucose transporter 1, glucose transporter 3, hexokinase II, pyruvate kinase M2, pyruvate dehydrogenase kinases 1 and 2, pyruvate dehydrogenase kinase 2, and LHDA. Further analysis revealed that oxamate significantly reduced chondrocyte apoptosis in articular cartilage. Oxamate attenuates nociception, inflammation, cartilage degradation, and chondrocyte apoptosis and possibly attenuates glycolysis-related protein expression in ACLT-induced OA rats. The present findings will facilitate future research on LDHA inhibitors in prevention strategies for OA progression.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Osteoartritis , Ratas , Animales , Lactato Deshidrogenasa 5/metabolismo , Nocicepción , Osteoartritis/metabolismo , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Enfermedades de los Cartílagos/metabolismo , Modelos Animales de Enfermedad
17.
Nutrients ; 15(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299424

RESUMEN

With advancing age, women experience irreversible deterioration in the quality of their oocytes, resulting in reduced fertility. To gain a deeper understanding of the influence of ferroptosis-related genes on ovarian aging, we employed a comprehensive approach encompassing spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsy. This investigation revealed the intricate interactions between ferroptosis and cellular energy metabolism in aging germ cells, shedding light on the underlying mechanisms. Our study involved 75 patients with ovarian senescence insufficiency, and we utilized multi-histological predictions of ferroptosis-related genes. Following a two-month supplementation period with DHEA, Ubiquinol CoQ10, and Cleo-20 T3, we examined the changes in hub genes. Our results showed that TFRC, NCOA4, and SLC3A2 were significantly reduced and GPX4 was increased in the supplement group, confirming our prediction based on multi-omic analysis. Our hypothesis is that supplementation would enhance the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), resulting in increased levels of the antioxidant enzyme GPX4, reduced lipid peroxide accumulation, and reduced ferroptosis. Overall, our results suggest that supplementation interventions have a notable positive impact on in vitro fertilization (IVF) outcomes in aging cells by improving metal ion and energy metabolism, thereby enhancing oocyte quality in older women.


Asunto(s)
Ferroptosis , Humanos , Femenino , Anciano , Ferroptosis/genética , Ovario , Envejecimiento/genética , Oocitos/metabolismo , Senescencia Celular
18.
Environ Toxicol ; 38(8): 2022-2030, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37163415

RESUMEN

Breast cancer is a leading cause of cancer-related death worldwide, and chemoresistance often leads to poor patient outcomes. In this study, we investigated the anticancer activity of synthetic diphenyl disulfide (DPDS) in breast cancer cell lines. DPDS inhibited cellular proliferation and viability in a dose-dependent manner and reduced colony formation, an index of clonogenicity. Annexin-V and 7-AAD double staining showed that DPDS could induce the apoptosis of breast cancer cells. Western blotting of the expression of Bax p21 and its cleaved form p18 suggested the activation of p18 Bax-induced apoptosis. Furthermore, the increased expression of the autophagy marker LC3B-II indicated autophagic lysosome accumulation induced by DPDS. Our findings suggest that DPDS has potential as a candidate for treating breast cancer, and further modifications and optimizations are warranted.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteína X Asociada a bcl-2 , Neoplasias de la Mama/metabolismo , Apoptosis , Proliferación Celular , Autofagia , Línea Celular Tumoral
19.
Biomed Pharmacother ; 163: 114888, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196543

RESUMEN

The decline in oocyte quality with age is an irreversible process that results in low fertility. Reproductive aging causes an increase in oocyte aneuploidy leading to a decrease in embryo quality and an increase in the incidence of miscarriage and congenital defects. Here, we show that the dysfunction associated with aging is not limited to the oocyte, as oocyte granulosa cells also show a range of defects related to mitochondrial activity. The addition of Y-27632 and Vitamin C combination drugs to aging germ cells was effective in enhancing the quality of aging cells. We observed that supplement treatment significantly decreased the production of reactive oxygen species (ROS) and restored the balance of mitochondrial membrane potential. Supplementation treatment reduces excessive mitochondrial fragmentation in aging cells by upregulating mitochondrial fusion. Moreover, it regulated the energy metabolism within cells, favoring oxygen respiration and reducing anaerobic respiration, thereby increasing cellular ATP production. In an experiment with aged mice, supplement treatment improved the maturation of oocytes in vitro and prevented the buildup of ROS in aging oocytes in culture. Additionally, this treatment resulted in an increased concentration of anti-mullerian hormone (AMH) in the culture medium. By improving mitochondrial metabolism in aging females, supplement treatment has the potential to increase quality of oocytes during in vitro fertilization.


Asunto(s)
Envejecimiento , Oocitos , Femenino , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Oocitos/metabolismo , Senescencia Celular , Mitocondrias
20.
Kaohsiung J Med Sci ; 39(7): 718-731, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37052190

RESUMEN

13-Acetoxysarcocrassolide (13-AC) is a marine cembranoid derived from the aquaculture soft coral of Lobophytum crassum. The cytotoxic effect of 13-AC against leukemia cells was previously reported but its mechanism of action is still unexplored. In the current study, we showed that 13-AC induced apoptosis of human acute lymphoblastic leukemia Molt4 cells, as evidenced by the cleavage of PARP and caspases, phosphatidylserine externalization, as well as the disruption of mitochondrial membrane potential. The use of N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, attenuated the cytotoxic effect induced by 13-AC. Molecular docking and thermal shift assay indicated that the cytotoxic mechanism of action of 13-AC involved the inhibition of heat shock protein 90 (Hsp 90) activity by eliciting the level of Hsp 70 and topoisomerase IIα in Molt4 cells. 13-AC also exhibited potent antitumor activity by reducing the tumor volume (48.3%) and weight (72.5%) in the in vivo Molt4 xenograft mice model. Our findings suggested that the marine cembranoid, 13-AC, acted as a dual inhibitor of Hsp 90 and topoisomerase IIα, exerting more potent apoptotic activity via the enhancement of ROS generation.


Asunto(s)
Antozoos , Antineoplásicos , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Antozoos/metabolismo , Estrés Oxidativo , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...